Ekniga.org

Читать книгу «Теория катастроф» онлайн.

При увеличении груза в некоторый момент происходит "катастрофа" или "хлопок": линейка скачком переходит из одного состояния в другое. Теория особенностей применима к изучению таких хлопков, и ее предсказания прекрасно оправдываются в экспериментах.

Для наглядной иллюстрации применений этого рода изобретен ряд приспособлений: одно из простейших, называемое машиной катастроф Зимана, изображено на рис. 7.

Машину катастроф каждый может легко изготовить сам. Для этого нужно взять доску (А) (см. рис. 7) и, вырезав из картона диск (В), прикрепить его иглой в центре (С) к доске так, чтобы он мог свободно вращаться. Другая игла (D) втыкается только в диск на его краю, а третья (Е) — только в доску. Чтобы закончить сборку машины, нужно еще две ленты из легко растяжимой резины (F, G), карандаш (Н) и лист бумаги (I).

Рис. 7. Машина катастроф Зимана

После того как игла на краю диска соединена с неподвижной иглой и с карандашом резинками, мы ставим острие карандаша в некоторой точке на листе бумаги и тем натягиваем резинки. Диск устанавливается в некотором положении. Теперь при движении острия карандаша диск будет поворачиваться. Оказывается, при некоторых положениях острия карандаша малое изменение его положения способно вызвать "катастрофу", т. е. скачок диска в новое положение. Если отметить на листе бумаги места всех таких "катастроф", то получается "кривая катастроф" (К).

Оказывается, что полученная кривая катастроф сама имеет четыре точки возврата. При пересечении кривой катастроф скачок может происходить, а может и не происходить, в зависимости от того, по какому пути острие карандаша обходило точки возврата кривой катастроф.

Экспериментируя с этой машиной и пытаясь найти правило, определяющее, будет ли скачок, читатель легко убедится в необходимости математической теории явления и сможет лучше оценить вклад теории особенностей в его объяснение.

Состояние машины катастроф описывается тремя числами. Действительно, положение острия карандаша задается двумя координатами (они называются управляющими параметрами). Положение диска определяется еще одним числом (углом поворота), называемым также внутренним параметром системы. Если все три числа заданы, то определены степени растяжения резинок и, следовательно, определена потенциальная энергия всей системы. Диск поворачивается так, чтобы эту энергию минимизировать (по меньшей мере локально). При фиксированном положении карандаша потенциальная энергия — функция от положения диска, т. е. функция, заданная на окружности. Эта функция может иметь в зависимости от значений управляющих параметров один или несколько минимумов (рис. 8, а). Если при изменении управляющих параметров положение минимума меняется плавно, то скачка не происходит. Скачок происходит при тех значениях управляющих параметров, для которых локальный минимум исчезает, слившись с локальным максимумом (рис. 8, б); после скачка диск оказывается в положении, отвечающем другому локальному минимуму (рис. 8, в).

Рис. 8. Потенциальная энергия машины катастроф

Рассмотрим трехмерное пространство состояний машины. Состояния, при которых диск находится в равновесии, образуют в этом пространстве гладкую поверхность. Будем проектировать эту поверхность на плоскость управляющих параметров вдоль оси внутреннего параметра (рис. 9). Это проектирование имеет складки и сборки. Проекция точек складок и есть кривая катастроф. На рис. 9 ясно видно, почему переход управляющих параметров через линию катастроф иногда вызывает, а иногда не вызывает скачок (это зависит от того, какой части нашей поверхности отвечает положение диска). Пользуясь этим рисунком, можно переходить с одного места поверхности равновесий на другое без скачков.

Рис. 9. Поверхность равновесий машины катастроф

Схема большинства применений теории катастроф такая же, как в описанных примерах. Предполагается, что изучаемый процесс описывается при помощи некоторого числа управляющих и внутренних параметров. Состояния равновесия процесса образуют поверхность того или иного числа измерений в этом пространстве. Проекция поверхности равновесий на плоскость управляющих параметров может иметь особенности. Предполагается, что это — особенности общего положения. В таком случае теория особенностей предсказывает геометрию "катастроф", т. е. перескоков из одного состояния равновесия в другое при изменении управляющих параметров. В большинстве серьезных приложений особенность — это сборка Уитни, а результат был известен до провозглашения теории катастроф.

Приложения описанного типа бывают более или менее обоснованными в зависимости от степени обоснованности исходных посылок. Например, в теории хлопков упругих конструкций и в теории опрокидывания кораблей предсказания теории полностью подтверждаются экспериментом. С другой стороны, в биологии, психологии и социальных науках (скажем, в приложениях к теории поведения биржевых игроков или к изучению нервных болезней) как исходные предпосылки, так и выводы имеют скорее эвристическое значение.

5. Бифуркации положений равновесия

Эволюционный процесс математически описывается векторным полем в фазовом пространстве. Точка фазового пространства задает состояние системы. Приложенный в этой точке вектор указывает скорость изменения состояния.

В некоторых точках вектор может обращаться в нуль. Такие точки называются положениями равновесия (состояние не меняется с течением времени). На рис. 10 изображено фазовое пространство системы, описывающей взаимоотношение хищника и жертвы (скажем, щук и карасей). Фазовое пространство — положительный квадрант плоскости. По оси абсцисс отложено число карасей, по оси ординат — щук. Точка Р — положение равновесия. Точка А соответствует равновесному количеству карасей при количестве щук, меньшем равновесного. Видно, что с течением времени в системе устанавливаются колебания; равновесное состояние рис. 10 неустойчиво. Установившиеся колебания изображаются замкнутой кривой на фазовой плоскости. Эта кривая называется предельным циклом.

Рис. 10. Фазовая плоскость модели хищник — жертва

Кривые в фазовом пространстве, образованные последовательными состояниями процесса, называются фазовыми кривыми. В окрестности точки, не являющейся положением равновесия, разбиение фазового пространства на фазовые кривые устроено так же, как разбиение на параллельные прямые: семейство фазовых кривых можно превратить в семейство параллельных прямых гладкой заменой координат. В окрестности положения равновесия картина сложнее. Как показал еще А. Пуанкаре, поведение фазовых кривых в окрестности положения равновесия на фазовой плоскости в системе общего положения такое, как изображено на рис. 11. Все более сложные случаи превращаются в указанные при общем малом изменении системы.

Рис. 11. Типичные фазовые портреты в окрестности точки равновесия

Системы, описывающие реальные эволюционные процессы, как правило, общего положения. Действительно, такая система всегда зависит от параметров, которые никогда не бывают известны точно. Малое общее изменение параметров превращает систему необщего положения в систему общего положения.

Таким образом, все более сложные, чем указанные выше, случаи, вообще говоря, не должны встречаться в природе, и их на первый взгляд можно не рассматривать. Эта точка зрения обесценивает большую часть теории дифференциальных уравнений и вообще математического анализа, где традиционно основное внимание уделяется малоценным, но трудным для исследования случаям не общего положения.

Дело, однако, обстоит совсем иначе, если нас интересует не индивидуальная система, а система, зависящая от одного или нескольких параметров. Действительно, рассмотрим пространство всех систем (рис. 12), разделенное на области, образованные системами общего положения. Поверхности раздела отвечают вырожденным системам; при малом изменении параметров вырожденная система становится невырожденной. Однопараметрическое семейство систем изображается на рис. 12 кривой. Эта кривая может трансверсально (под ненулевым углом) пересекать границу раздела разных областей невырожденных систем.

Рис. 12. Однопараметрическое семейство как кривая в пространстве систем

Таким образом, хотя при каждом индивидуальном значении параметра систему малым шевелением можно превратить в невырожденную, этого нельзя сделать одновременно при всех значениях параметра: всякая кривая, близкая к рассматриваемой, пересекает границу раздела при близком значении параметра (вырождение, устраненное малым шевелением при данном значении параметра, вновь возникает при некотором близком значении).

Перейти на стр:
Изменить размер шрифта: