Ekniga.org

Читать книгу «Теория катастроф» онлайн.

Этот вывод сохраняется при переходе от одномерной среды к среде, заполняющей пространство любой размерности, и при учете влияния на движение ее частиц внешнего силового поля или поля, созданного средой, а также при учете аффектов теории относительности и расширения Вселенной.

Если силовые поля потенциальны (т. е. их работа на любом пути зависит лишь от начала и конца пути) и начальное поле скоростей тоже потенциально, то задача описания особенностей отображений gt и их метаморфоз при изменении t математически тождественна задаче об особенностях каустик и их метаморфоз (то и другое составляет предмет теории так называемых лагранжевых особенностей).

Точки бесконечной плотности образуют в случае двухмерной среды кривые на плоскости. Эти кривые образованы критическими значениями отображения gt, т. е. его значениями в критических точках (для отображения рис. 1 критические точки — это точки экватора сферы, критические значения — точки видимого контура на горизонтальной плоскости).

Линия критических значений отображения gt называется его каустикой. Ее можно определить как место пересечений бесконечно близких лучей (траекторий частиц), т. е. так же, как обычную оптическую каустику.

Таким же образом описание метаморфоз оптических каустик доставляет нам описание перестроек скоплений частиц (мест бесконечной плотности среды) при потенциальном движении.

Первая особенность на плоскости выглядит как серпик с полукубически заостренными вершинами (в трехмерном пространстве новорожденная каустика имеет вид блюдца). Я. Б. Зельдович назвал такую каустику блином (первоначально блины интерпретировались как галактики, позже — как скопления).

При дальнейшем движении среды рождаются новые блины. Кроме того, имеющиеся блины начинают перестраиваться и могут взаимодействовать друг с другом. Одна из типичных последовательностей событий в двухмерной среде изображена на рис. 49.

Все возможные в трехмерной среде элементарные перестройки изображены на рис. 44, 45 (получение этих результатов уже требует сложной математической теории лагранжевых особенностей).

В результате перестроек плотность имеет особенности различных порядков на поверхностях блинов, на линиях и в отдельных точках. Будем характеризовать особенность средней плотностью в ε-окрестности рассматриваемой точки (т. е. отношением массы, попавшей к ε-окрестность, к объему окрестности).

Рис. 49. Сценарий взаимодействия 'блинов' Зельдовича

В точках каустики средняя плотность стремится к бесконечности когда радиус окрестности ε стремится к пулю.

Порядок величины средней плотности в различных точках каустик таков:

При изменении времени в отдельные моменты появляются особенности А5 со средней плотностью порядка ε-1/5 и D5-1 и ε-1).

Согласно астрофизикам, в те времена, когда радиус Вселенной был раз в тысячу меньше нынешнего, крупномасштабное распределение вещества во Вселенной было практически однородным, а поле скоростей — практически потенциальным. Дальнейшее движение частиц привело к образованию каустик, т. е, особенностей плотности и скоплений частиц. До образования блинов плотность остается достаточно малой, чтобы считать среду бесстолкновительной. После этого момента среду можно считать бесстолкновительной, если предполагать что значительная часть массы Вселенной сосредоточена в массивных нейтрино; если же большая часть массы приходится на протоны и нейтроны, то к выводам из геометрии каустик и их перестроек следует относиться с осторожностью, так как среда перестает быть бесстолкновительной.

Выводы о скоплении вещества на поверхностях с преимущественным скоплением вдоль некоторых линий (шнуров), соединяющихся в особых точках (узлах), по-видимому, соответствуют астрономическим наблюдениям, по крайней мере в общих чертах (С. Ф. Шандарин).

10. Особенности в задачах оптимизации: функция максимума

Многочисленные особенности, бифуркации и катастрофы (скачки) возникают во всех задачах о нахождении экстремумов (максимумов, минимумов), задачах оптимизации, управления и принятия решений. Представим себе, например, что мы должны выбрать х так, чтобы обеспечить наибольшее значение функции f (х) (рис. 50). При плавном изменении функции оптимальное решение меняется скачком, перескакивая с одного из двух конкурирующих максимумов (Л) на другой (В).

Рис. 50. Разрыв оптимального управления

Ниже мы рассмотрим несколько задач такого рода; все они далеки от полного решения, хотя в некоторых классификация особенностей проведена достаточно далеко.

Рассмотрим семейство f(х, у) функций переменной х, зависящих от параметра у. При каждом фиксированном значении параметра у вычислим максимум функции, обозначим его через

Функция F непрерывна, но не обязательно гладкая, даже если f — многочлен.

Пример 1. Пусть у — азимут луча зрения, х — дальность, f — угловая высота ландшафта на расстоянии х при азимуте у (рис. 51). Тогда F определяет линию горизонта. Ясно, что линия горизонта гладкой поверхности может иметь изломы и они неустранимы малым шевелением.

Рис. 51. Излом линии горизонта гладкого ландшафта

Переменная х и параметр у могут быть точками пространств любой размерности; наряду с максимумами встречаются и минимумы.

Пример 2. Пусть х — точка плоской кривой у" у — точка области, ограниченной этой кривой, f(х, у) — расстояние от у до х.

Будем рассматривать f как функцию точки кривой, зависящую от точки области как от параметра. Тогда функция минимума семейства, F(у), есть кратчайшее расстояние от точки у до кривой у (рис. 52). Ясно, что эта функция непрерывна, но не всюду гладкая.

Перейти на стр:
Изменить размер шрифта: