Ekniga.org

Читать книгу «Теория катастроф» онлайн.

Рис. 52. Расстояние до кривой и его особые точки

Мы можем представить себе лопату, ограниченную кривой γ; насыпем на эту лопату возможно большую кучу сухого песка. Поверхность кучи будет тогда графиком функции F. Ясно, что для лопаты общего положения поверхность кучи имеет хребет (линию излома).

Линии уровня функции F — не что иное, как передние фронты распространяющегося внутрь кривой γ возмущения.

Теория особенностей позволяет перечислить особенности функций максимума F как в описанном примере, так и для семейств общего положения функций любого числа переменных при условии, что число параметров у не больше 10 (Л. Н, Брызгалова). Рассмотрим простейшие случаи одного и двух параметров.?

Выбирая координаты на оси (плоскости) значений параметра у и вычитая из F гладкую функцию параметров, мы можем привести функцию максимума семейства общего положения в окрестности каждой точки к одной из следующих нормальных форм:

один параметр:

два параметра:

Формула, относящаяся к случаю одного параметра означает, в частности, что линия горизонта гладкого ландшафта общего положения не имеет особенностей, отличных от простейших изломов. Особенности функции максимума, описанные формулами для двух параметров, дают следующие особенности функции минимума (например, особенности поверхности кучи песка на лопате): линия хребта, точка соединения трех хребтов и конец хребта (см. рис. 52).

В последнем случае график функции минимума есть часть поверхности ласточкиного хвоста (см. рис. 34), получающаяся удаленном прилежащей к ребру возврата пирамиды (ВСВ) (и еще отражением поверхности рис. 34 в горизонтальной плоскости).

При 3, 4, 5 и 6 параметрах число различных особенностей равно соответственно 5, 8, 12 и 17; начиная с 7 параметров, число типов несводимых друг к другу особенностей становится бесконечным: нормальные формы неизбежно содержат "модули", являющиеся функциями от параметров.

Топологически функция максимума (минимума) семейства общего положения устроена как гладкая функция общего положения (В. И. Матов).

На рис. 53 изображены типичные особенности множества негладкости функции максимума трехпараметрического семейства.

Они позволяют исследовать типичные перестройки особенностей ударных волн на плоскости, происходящие с течением времени: для этого нужно сперва изучить типичные перестройки двумерных сечений пяти изображенных на рис. 53 поверхностей (эти перестройки также изображены на рисунке), Оказывается, некоторые из них являются, а некоторые не являются перестройками ударных волн (например, для потенциальных решений уравнения Бюргерса ut + uuх = εuхх с исчезающей вязкостью ε).

А именно, реализуются ударными волнами те перестройки, которые отмечены на рис. 53 стрелками. Правила отбора найдены И. А. Богаевским и Ю. М. Барышниковым:

1) возникающая после перестройки ударная волна в окрестности точки перестройки стягиваема;

Рис. 53. Типичные особенности множества во гладкости максимума и типичные перестройки ударных волн

2) дополнение к ударной волне в момент перестройки и сразу после нее топологически (гомотопически) одинаковы.

Каждое из этих условий необходимо и достаточно для реализуемости типичной перестройкой ударных волн на плоскости и в трехмерном пространстве типичной перестройки. особенностей функции максимума. Так ли это в многомерном случае — неизвестно.

11. Особенности границы достижимости

Управляемая система в фазовом пространстве задается так: в каждой точке пространства дан не один вектор скорости (как в обычной эволюционной системе), а целее множество векторов, называемое индикатрисой допустимых скоростей (рис. 54).

Задача управления состоит в том, чтобы, выбирая в каждый момент времени вектор скорости из предосталяемого индикатрисой набора допустимых скоростей, достичь заданной цели (например, прийти за кратчайшее время на заданное подмножество фазового пространства).

Зависимость кратчайшего времени достижения цели от начальной точки может иметь особенности. Рассматривавшиеся в н. 10 особенности функции минимума расстояния до кривой — частный случай (индикатриса — окружность, а цель — кривая). В отличие от этого частного случая особенности кратчайшего времени в общей задаче управления изучены весьма слабо.

Рис. 54. Поле индикатрис допустимых скоростей управляемой системы

В общем случае достичь цели можно не при любом начальном условии. Точки фазового пространству из которых можно достичь цели (за любое время), называются областью достижимости.

Граница области достижимости может иметь особенности даже в том случае, когда пи цель, ни поле индикатрис в различных точках фазового пространства особенностей не имеют. Мы приводим ниже классификацию особенностей границы достижимости в общей управляемой системе па фазовой плоскости в случае, когда индикатрисы и цель — гладкие кривые (по А. А. Давыдову).

Из четырех типов особенностей границы три записываются простыми формулами (при подходящем выборе локальных координат на плоскости):

Перейти на стр:
Изменить размер шрифта: