Ekniga.org

Читать книгу «Теория катастроф» онлайн.

Выпуклой оболочкой множества называется пересечение всех содержащих его полупространств. Индикатриса управляемой системы может быть невыпуклой.

Однако оказывается, что невыпуклую индикатрису можно заменить ее выпуклой оболочкой.

Рис. 60. Овыкупление индикатрисы при помощи смешанной стратегии

Например, индикатриса скоростей яхты при встречном ветре невыпукла (рис. 60). Против ветра можно, однако, двигаться галсами, применяя смешанную стратегию, т. е. перемежая участки движения с разными скоростями, принадлежащими индикатрисе. Средняя скорость движения при смешанной стратегии принадлежит множеству средних арифметических используемых векторов индикатрисы, т. е. выпуклой оболочке.

Особенности выпуклых оболочек кривых и поверхностей общего положения в трехмерном пространстве исследованы В. Д. Седых и В. М. Закалюкиным. В случае кривых с точностью до гладкой замены переменных оболочка задается в окрестности каждой своей точки одной из шести формул:

(рис. 61). В случае поверхностей — одной из трех формул

где ρ (х, у) — расстояние от точки (х, у) до угла у ≥ с | х | (рис. 62). Число с > 0 является модулем (инвариантом): оболочки, соответствующие разным с, не сводятся одна к другой гладким преобразованием.

Рис. 61. Типичные особенности выпуклых оболочек пространственных кривых

Особенности выпуклых оболочек в пространстве большей размерности мало изучены. Согласно В. Д. Седых, выпуклая оболочка общего k-мерного многообразия в пространстве размерности выше к+2 имеет модули, являющиеся функциями к переменных.

Рис. 62. Типичные особенности выпуклых оболочек поверхностей

Тень, отбрасываемая бесконечно-гладким или даже аналитическим выпуклым телом, может, как это ни кажется странным, иметь особенности. А именно, граница тени трехмерного выпуклого тела может иметь разрывы третьей производной, а тела размерности 4 и выше — даже второй (И. А. Богаевский, 1990).

Много новых интересных особенностей возникает в оптимизационных задачах с ограничениями, например в задаче об обходе препятствия. Их исследование привело к новым результатам в одной из самых классических областей математики — геометрии гладких поверхностей в трехмерном пространстве.

12. Гладкие поверхности и их проектирования

Гладкая кривая на плоскости может иметь касательную со сколь угодно большим числом точек касания (рис. 63), но это не в случае общего положения. Малым шевелением кривой можно добиться того, что никакая прямая не будет касаться ее более чем в двух точках.

Рис. 63. Тройная касательная нетипичной кривой

В скольких точках может касаться прямой поверхность общего положения? Немного подумав или поэкспериментировав, читатель может убедиться, что наибольшее число точек касания равно четырем; сохраняя три точки касания, прямую можно двигать, две — двигать в двух направлениях.

Порядок касания прямой с кривой или поверхностью также может быть различным (например, порядок касания оси х с графиком у = х2 первый, х3 — второй и т. д.) Плоская кривая общего положения не имеет касательных выше второго порядка (второй порядок касания встречается в отдельных точках кривой, называемых точками перегиба).

Для поверхности в пространстве дело обстоит уже не так просто. В точках, близ которых поверхность не выпукла, имеются касательные выше первого порядка (они называются асимптотическими касательными). Для поверхности общего положения касательные третьего порядка имеются на некоторой линии, а четвертого — в отдельных точках; касательных выше четвертого порядка общая поверхность не имеет.

Все точки поверхности общего положения делятся по порядкам касательных на следующие 7 классов (рис. 64):

1) область эллиптических точек (все касательные порядка 1);

2) область гиперболических точек (две асимптотические касательные).

Эти две области разделяет общая граница:

3) линия параболических точек (одна асимптотическая касательная).

Рис. 64. Классификация точек на гладкой поверхности

Внутри области гиперболичности выделяется особая линия:

Перейти на стр:
Изменить размер шрифта: