Ekniga.org

Читать книгу «Теория катастроф» онлайн.

Итак, вырожденные случаи неустранимы, если рассматривается не индивидуальная система, а целое семейство. Если семейство однопараметрическое, то неустранимы лишь простейшие вырождения, изображаемые границами коразмерности один (т. е. задающимися одним уравнением) в пространстве всех систем. От более сложных вырожденных систем, образующих множество коразмерности два в пространстве всех систем, можно избавиться малым шевелением однопараметрического семейства.

Если мы интересуемся двупараметрическим семейством, то можно не рассматривать вырожденных систем, образующих множество коразмерности три и т. д.

Тем самым возникает иерархия вырождений по коразмерностям и стратегия их исследования: вначале следует изучать случаи общего положения, затем вырождения коразмерности один, затем — два и т. д. При этом исследование вырожденных систем не должно ограничиваться изучением картины в момент вырождения, но должно включать описание перестроек, происходящих, когда параметр, меняясь, проходит через вырожденное значение.

Изложенные выше общие соображения принадлежат А. Пуанкаре и применимы не только к исследованию положений равновесия эволюционных систем, но к большей части всего математического анализа. Хотя они были высказаны уже сто лет назад, успехи в реализации намеченной А. Пуанкаре программы теории бифуркаций остаются в большинстве областей анализа довольно скромными, отчасти в силу больших математических трудностей, отчасти же вследствие психологической инерции и засилья аксиоматико-алгебраического стиля.

Вернемся, однако, к положениям равновесия эволюционных систем. К настоящему времени решенным можно считать лишь вопрос о перестройках фазовых кривых при бифуркациях положений равновесия в однопараметрических семействах общего положения; уже случай двух параметров выходит за рамки возможностей сегодняшней науки.

Рис. 13. Кривая равновесий однопараметрического семейства систем

Результаты исследования общего однопараметрического семейства суммированы на рис. 13 — 18. На рис. 13 изображено однопараметрическое семейство эволюционных процессов с одномерным фазовым пространством (по оси абсцисс отложено значение параметра ε, по оси ординат — состояние процесса х).

Рис. 14. Превращение нетипичных бифуркаций в типичные при малом шевелении семейства

Для однопараметрического семейства общего положения равновесия при всевозможных значениях параметра образуют гладкую кривую (Г на рис. 13, в более общем случае размерность многообразия состояний равновесия равна числу параметров). В частности, это означает, что изображенные на рис. 14 слева бифуркации в семействе общего положения не встречаются: при малом изменении семейства Г превращается в гладкую кривую одного из изображенных на рис. 14 справа типов[3].

Проектирование кривой Г на ось значений параметра в случае однопараметрического семейства имеет лишь особенности типа складки (при большем числе параметров появляются и более сложные особенности теории Уитни: например, в общих двупараметрических семействах проектирование поверхности равновесий Г на плоскость значений параметров может иметь точки сборки, где сливаются три положения равновесия).

Таким образом, при изменении параметра выделяются особые или бифуркационные значения параметра (критические значения проекции, a, b, с, d на рис. 13). Вне этих значений положения равновесия гладко зависят от параметров. При подходе параметра к бифуркационному значению положение равновесия "умирает", слившись с другим (или же "из воздуха" рождается пара положений равновесия).

Из двух рождающихся (или умирающих) вместе положений равновесия одно устойчиво, другое неустойчиво.

В момент рождения (или смерти) оба положения равновесия движутся с бесконечной скоростью: когда значение параметра отличается от бифуркационного на ε, оба близких положения равновесия удалены друг от друга на расстояние порядка √ε.

На рис. 15 изображена перестройка семейства фазовых кривых на плоскости в общем однопараметрическом семействе. Устойчивое положение равновесия ("узел") сталкивается при изменении параметра с неустойчивым ("седлом"), после чего оба исчезают. В момент слияния на фазовой плоскости наблюдается картина необщего положения ("седло-узел").

На рис. 15 видно, что перестройка, в сущности, одномерная: вдоль оси абсцисс происходят те же явления, что на оси х на рис. 13, а вдоль оси ординат перестройки нет вовсе. Таким образом, перестройка через седло — узел получается из одномерной перестройки "надстраиванием" оси ординат. Оказывается, вообще все перестройки положений равновесия в общих однопараметрических системах получаются из одномерных перестроек аналогичным надстраиванием.

Рис. 15. Седло-узел: типичная локальная бифуркация в одно- параметрическом семействе

Если устойчивое положение равновесия описывает установившийся режим в какой-либо реальной системе (скажем, экономической, экологической или химической), то при его слиянии с неустойчивым положением равновесия система должна совершить скачок, перескочив на совершенно другой режим: при изменении параметра равновесное состояние в рассматриваемой окрестности исчезает. Скачки этого рода и привели к термину "теория катастроф".

6. Потеря устойчивости равновесных и автоколебательных режимов

Потеря устойчивости состояния равновесия при изменении параметра не обязательно связана с бифуркацией самого состояния равновесия: оно может терять устойчивость не только сталкиваясь с другим, но и самостоятельно.

Соответствующая перестройка фазового портрета на плоскости изображена на рис. 16. Возможны два варианта.

Рис. 16. Бифуркация рождения цикла

А. При изменении параметра из положения равновесия рождается предельный цикл (радиуса порядка √ε, когда значение параметра отличается от бифуркационного на ε). Устойчивость равновесия переходит к циклу, само же равновесие становится неустойчивым.

Б. В положении равновесия умирает неустойчивый предельный цикл; область притяжения положения равновесия уменьшается с ним до нуля, после чего цикл исчезает, а его неустойчивость передается равновесному состоянию.

А. Пуанкаре заметил, а А. А. Андронов и его ученики еще до войны (в 1939 г.) доказали, что, кроме описанной выше (п. 5) потери устойчивости положений равновесия сливающихся с неустойчивыми, и только что описанных способов потери устойчивости типа А или Б в общих однопараметрических семействах систем с двухмерным фазовым пространством никаких иных видов потери устойчивости не встречается. Позже было доказано, что и в системах с фазовым пространством большей размерности потеря устойчивости положений равновесия при изменении одного параметра происходит каким-либо из описанных выше способов (по направлениям всех дополнительных осей координат при изменении параметра равновесие остается притягивающим).

Если наше положение равновесия — установившийся режим в реальной системе, то при изменении параметра в случаях А и Б наблюдаются следующие явления.

А. После потери устойчивости равновесия установившимся режимом оказывается колебательный периодический режим (рис. 17); амплитуда колебаний пропорциональная квадратному корню из закритичности (отличия параметра от критического значения, при котором равновесие теряет устойчивость).

[3] Под "типом" здесь понимается класс эквивалентности с точностью до диффеоморфизма плоскости, а не с точностью расслоенного диффеоморфизма (расслоенный диффеоморфизм — это семейство диффеоморфизмов фазового пространства, зависящих от параметра, сопровождаемых диффеоморфной заменой параметра).

Перейти на стр:
Изменить размер шрифта: